MENTAL NOTE #85: SOMETIMES, I GET A HEADACHE WHEN THINKING ABOUT THE UNIVERSE.
“The hypersphere is expanding from a point, like a four-dimensional balloon being inflated, creating in every instant more space in the universe. Sometime after the expansion begins, galaxies condense and are carried outward on the surface of the hypersphere. There are astronomers in each galaxy, and the light they see is also trapped on the curved surface of the hypersphere. As the sphere expands, an astronomer in any galaxy will think all the other galaxies are running away from him. There are no privileged reference frames.* The farther away the galaxy, the faster its recession. The galaxies are embedded in, attached to space, and the fabric of space is expanding. And to the question, Where in the present universe did the Big Bang occur? the answer is clearly, everywhere.”
Sagan, C. (2014). The demon-haunted world: Science as a candle in the dark. New York: Ballantine Books.
AND THEN, because AstroPhysicists have nothing better to do … Dahhhh … they come up with a MULTIVERSE Theory, which not only tends to cause normal Cosmology enthusiasts to get migraines, but also bleeding profusely from the nose. Nevertheless, the pain is worth it!
“This picture of the universe, or multiverse, as it is called, explains the long-standing mystery of why the constants of nature appear to be fine-tuned for the emergence of life. The reason is that intelligent observers exist only in those rare bubbles in which, by pure chance, the constants happen to be just right for life to evolve. The rest of the multiverse remains barren, but no one is there to complain about that.
Some of my physicist colleagues find the multiverse theory alarming. Any theory in physics stands or falls depending on whether its predictions agree with the data. But how can we verify the existence of other bubble universes? Paul Steinhardt and George Ellis have argued, for example, that the multiverse theory is unscientific, because it cannot be tested, even in principle.
Surprisingly, observational tests of the multiverse picture may in fact be possible. Anthony Aguirre, Matt Johnson, Matt Kleban and others have pointed out that a collision of our expanding bubble with another bubble in the multiverse would produce an imprint in the cosmic background radiation—a round spot of higher or lower radiation intensity. A detection of such a spot with the predicted intensity profile would provide direct evidence for the existence of other bubble universes. The search is now on, but unfortunately there is no guarantee that a bubble collision has occurred within our cosmic horizon.
There is also another approach that one can follow. The idea is to use our theoretical model of the multiverse to predict the constants of nature that we can expect to measure in our local region. If the constants vary from one bubble universe to another, their local values cannot be predicted with certainty, but we can still make statistical predictions. We can derive from the theory what values of the constants are most likely to be measured by a typical observer in the multiverse. Assuming that we are typical—the assumption that I called the principle of mediocrity—we can then predict the likely values of the constants in our bubble.
This strategy has been applied to the energy density of the vacuum, also known as “dark energy”. Steven Weinberg has noted that in regions where dark energy is large, it causes the universe to expand very fast, preventing mater from clumping into galaxies and stars. Observers are not likely to evolve in such regions. Calculations showed that most galaxies (and therefore most observers) are in regions where the dark energy is about the same as the density of matter at the epoch of galaxy formation. The prediction is therefore that a similar value should be observed in our part of the universe.” (The arguments for a Multiverse go on further in this particular paper, and if you want to know more, click on the Scientific American link:
Source: Vilenkin, A. (2011, July 19). The Case for Parallel Universes. Retrieved September 15, 2020, from https://www.scientificamerican.com/article/multiverse-the-case-for-parallel-universe/